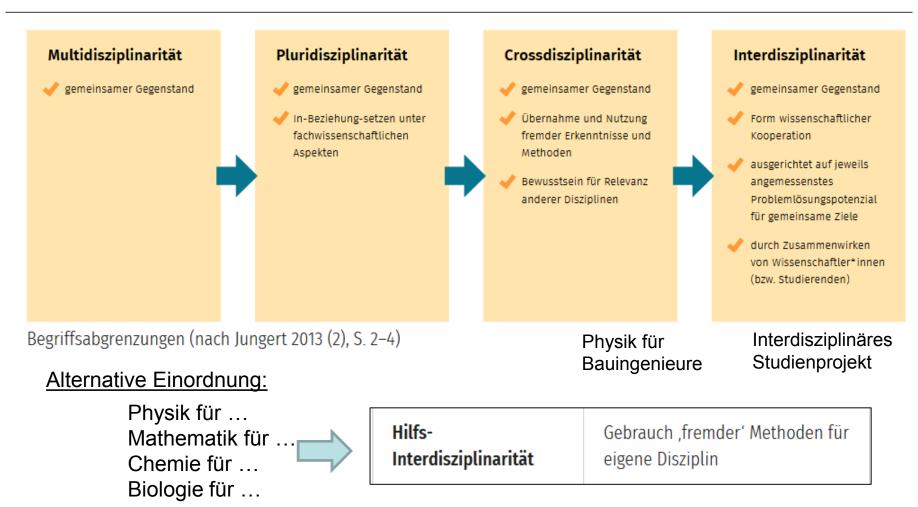
Interdisziplinarität in den Naturwissenschaften

Wilfried Nörtershäuser

an Beispielen

- (1) Servicelehre (hier "Physik für Bauingenieure")
- (2) Interdisziplinäre Studienprojekte

Begriffsbestimmung



Interdisziplinarität

eine Form wissenschaftlicher Kooperation in Bezug auf gemeinsam zu erarbeitende Inhalte und Methoden, welche darauf ausgerichtet ist, durch Zusammenwirken geeigneter Wissenschaftler/-innen [bzw. Studierender] unterschiedlicher fachlicher Herkunft das jeweils angemessenste Problemlösungspotential für gemeinsam bestimmte Zielstellungen bereitzustellen.

Begriffsabgrenzungen

https://dbs-lin.ruhr-uni-bochum.de/lehreladen/lehrformate-methoden/interdisziplinaere-lehrformate/begriffliche-annaeherung/

Ziele

Fachw	issenschaft	in	der
Service	elehre		

Aneignung von Wissen über die Fachgebiete des eigenen Studienganges hinaus (disziplinäre und interdisziplinäre Fachkenntnisse)

Bedeutung der "fremden" Fachwissenschaft für die eigene

Erwerb von Kenntnissen der Methodik des anderen Faches

Projektarbeit im interdisziplinären Projekt

Stärkung der fachübergreifenden Kompetenzen (Methoden-, Sozial-, Sach- und Selbstkompetenzen) durch die Bearbeitung einer komplexen Projektaufgabe in studienganggemischter Zusammenarbeit

Zusammenarbeit mit anderen Fächern

Anwendung der Methodik des eigenen Faches

Motivation der Studierenden

Fachwissenschaft in der Servicelehre

Projektarbeit im interdisziplinären Projekt

Fragestellung für die Studierenden

Welche Kompetenzen erwerbe ich hier, die für mein Fach nützlich sind / sein könnten

Welchen Beitrag kann mein Fach zur Problemlösung leisten

Wesentlich: Bedeutsamkeit und Relevanz

Für Fachpraxis im eigenen Fach

→ Einstieg durch Problem oder Fragestellung aus dem Fach der Adressaten

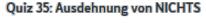
- Bezug zur Lebenswelt
- Zukunftsthema
- klar fachübergreifend

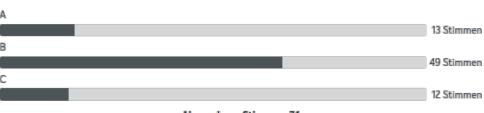
Beispiel: Wärmeleitungsprozesse

Was ist der Vorteil der Doppelverglasung gegenüber Einfachverglasung?

Dieses Thermogramm lässt erkennen, an welchen Stellen besonders viel Energie vom Inneren des Hauses nach außen gelangt. Je heller die Färbung ist, desto größer ist der Wärmestrom. (© Alfred Pasieka/Photo Researchers, Inc.)

Aktivierende Methoden in der Vorlesung


Fragen an die Studierenden → direkt, Quiz (z.B. Pingo, Tweedback) + Peer Instruction

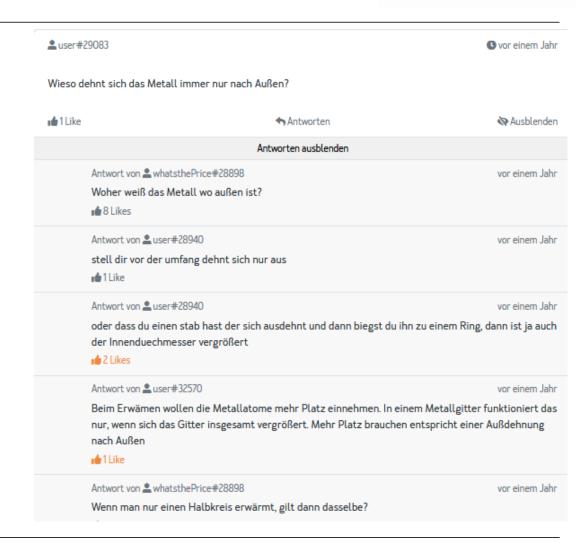

Ausdehnung von NICHTS

Eine Metallplatte mit einem Loch darin wird erhitzt, bis sich das Eisen um ein Prozent ausdehnt. Der Lochdurchmesser

- (A) wird größer.
- (B) wird kleiner.
- (C) ändert sich nicht.

Abgegebene Stimmen: 74

Aktivierende Methoden in der Vorlesung



Möglichkeit von Rückfragen

→ direkt, Chatroom

"Tweedback":

https://tweedback.de

Aktivierende Methoden in der Vorlesung

Fragen an die Studierenden → direkt, Quiz (z.B. Pingo) + Peer Instruction Möglichkeit von Rückfragen → direkt, Chatroom

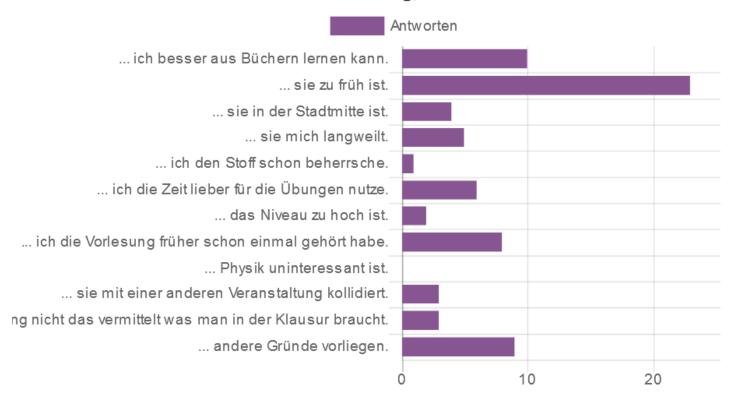
Experimente -> Veranschaulichung, einprägsames Erlebnis

Aktivierung der vermittelten Konzepte → "Kurzübung"

Ergebnis

Interaktivität kam insgesamt gut an

Gute Evaluation unter verbleibenden Hörern


ABER: Hohe Quote an Nichtteilnehmern / Abbrechern!!

- etwa 570 angemeldete Teilnehmer
- 1. Vorlesung: ca. 400 Teilnehmer
- 2. Vorlesung: ca. 250 Teilnehmer
- höchste je erreichte Teilnahme an Quizfrage: 148
- bei Evaluation: 130 Teilnehmer

Feedback: Warum besuchen Sie die Veranstaltung nicht?

Ich komme nicht oder nicht mehr zur Vorlesung, weil

