Neue Lehr- und Lernformen in der Ingenieurausbildung an der TU Ilmenau

Univ. Prof. Dr.-Ing. habil. Jürgen Petzoldt TU Ilmenau

BASIC 1 1.1.2012- 31.12.2016 BASIC 2 1.1.2017- 31.12.2020

Neue Lehr- und Lernformen in der Ingenieurausbildung insbesondere in der Studieneingangsphase

Ein Projekt der Technischen Universität Ilmenau im Programm für bessere Studienbedingungen und mehr Qualität in der Lehre

gefördert vom

Motivation

- besserer Studieneinstieg f
 ür Ingenieurstudenten
- unterschiedlichen Voraussetzungen Anpassung des Einstiegsniveaus entsprechend der Zielgruppen
- praktische Erfahrungen sind wichtig für Motivation und Verständnis und unterstützen die Aneignung von Grundlagenwissen

Ziele:

- weniger Studienabbrecher
- bessere Studienleistungen
- zeitgemäße Lehr- und Lernformen

Profil ingenieurwissenschaftlicher Bildung

- Merkmale

- mathematisch/naturwissenschaftliche und informatikorientierte theoretische Grundlagen auf höchstem Niveau
- empirisch/experimentell geprägte Forschungsmethodik
- Organisations- und Management-Talent zu projektbezogenen Umsetzung von Ingenieurarbeiten

Wissensvermittlung in integrierter Einheit der drei Merkmale, d.h. nicht alle Absolventen gleich, sondern entsprechend individueller Stärken fördern

Einstiegsniveau äußert unterschiedlich (national und international)

Profil ingenieurwissenschaftlicher Bildung

- Herausforderungen
- exponentiell anwachsendes und sich schnell verbreiterndes Wissen
- individuell begrenzte Aufnahmefähigkeit von Wissen pro Zeiteinheit ist im Durchschnitt konstant
- ständig neue Anforderungen an technisches Wissen aus anderen Fachdisziplinen

Maßstab für die Effizienz ingenieurwissenschaftlicher Bildung ist die Leistungsfähigkeit der wertschöpfenden Bereiche einer Gesellschaft

Profil ingenieurwissenschaftlicher Bildung

- Lösungsansätze
- Konsequente Begabtenförderung im Schulsystem in der Berufsausbildung und im zersplitterten HS System bei konsequenter Durchlässigkeit der Systeme
- Grundwissen an ausgewählten, für das Verständnis besonders geeigneter Beispiele vermitteln als Basis für die gezielte Vertiefung in verschiedene Spezialgebiete im gesamten Berufsleben
- Didaktische Durchdringung der Wissensvermittlung in der genannten Dreiteilung unter Nutzung sich ständig entwickelnder Möglichkeiten unter Beibehaltung bewährter Methoden

Die Basic Engineering School – Ein Überblick

Ziel: Bessere Verankerung des Ingenieurgrundlagenwissens und Reduzierung der Abbruchquoten bei unterschiedlichem Einstiegsniveau

- Verzahnung der Lehrangebote im Grundstudium (GIG)
- Erhöhung des übungs- und anwendungsorientierten Lehranteils
- Problem- und objektbasierte Lehrformate
- Begleitende Kompetenzentwicklung
- Interdisziplinäres Arbeiten, interdisziplinäres Praxisprojekt
- Integrierte digitale Unterstützung

Fachlich-inhaltliche Schwerpunkte

Mathematik 1 und 2 Physik 1 und 2

Maschinenbau

Darstellungslehre und Maschinenelemente 1

CAD

Technische Mechanik

Elektrotechnik

Elektrotechnik 1

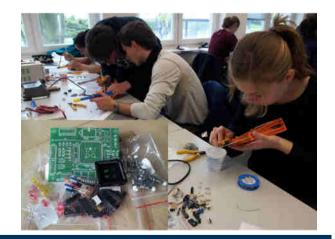
Grundlagen der Elektronik

Informatik

Algorithmen und Programmierung

Technische Informatik

Fertigungs- und schaltungstechnische Grundlagen +
Ingenieurwissenschaftliches Grundpraktikum
studiengangspezifische/-motivierende Fächer
Vermittlung von Schlüsselkompetenzen zum universitären Studieren



Spezielle BASIC-Angebote

- Praktische Arbeiten in Werkstätten, integriertes Grundpraktikum
- Interdisziplinäre Projektarbeit
- Interdisziplinäre Lehrveranstaltung zur Verbesserung des Verständnisses der technischen Zusammenhänge
- Individuelle Tests und Feedback für Studierende zu wichtigen sozialen und persönlichen Kompetenzen für Studium und Beruf
- Spezielles Angebot zur Unterstützung der Projekt- und Teamarbeit

Quelle der Bilder: http://startblog-ilmenau.tumblr.com

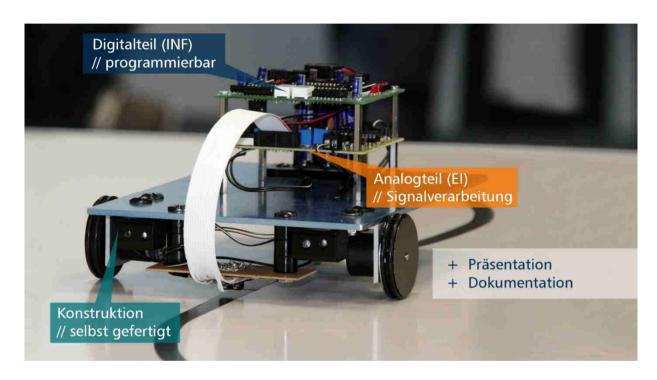
Interdisziplinäre Praxisprojekte

Im Jahrgang 2017/18:

Bearbeitung überwiegend im 2. Fachsemester (praktische Montage)

Interdisziplinäre Praxisprojekte (5 Studierende pro Projektgruppe):

- Autonomer Miniaturtransporter
- Solarzellenhalter mit Nachführung
- Windrad


Integriert: Team- und Projektarbeit

(Teambildung, Prozessplanung, Produktdokumentation, Präsentation)

Semesterbegleitende Studienleistung in ingenieurtechnischen Grundlagen

Interdisziplinäre Projektarbeit "Autonomer Miniaturtransporter" (AMT)

Praktische Seminare

Themen (Beispiele):

- Grundfertigkeiten spanender Fertigungsverfahren (Bohren, Feilen, Drehen, Fräsen),
- Modellaufnahme,
- Werkstoffkennwerte im Zugversuch,
- Theorie und Anwendung elektronischer Messgeräte, Bauteile und Baugruppen (Oszi, Transistor, Widerstand, Kondensator, Spulen, Quellen),
- Grundfertigkeit Löten, Schaltungen löten,
- Entwurf, Aufbau und Test von Schaltungen auf Lochrasterplatinen
- Arduino-Programmierung,
- kombinatorische und sequentielle Schaltungen

September + praktische Montage


Erfahrungen aus bisheriger Erprobung

Evaluation: Fragebögen, Feedbackrunden, persönliche Gespräche,...

- Motivation
- Studierfähigkeit, Kompetenzentwicklung

Erfahrungen aus bisheriger Erprobung

Interdisziplinäre Projektarbeit "Autonomer Miniaturtransporter":

Abschlusspräsentation der Projektarbeiten, Oktober 2015

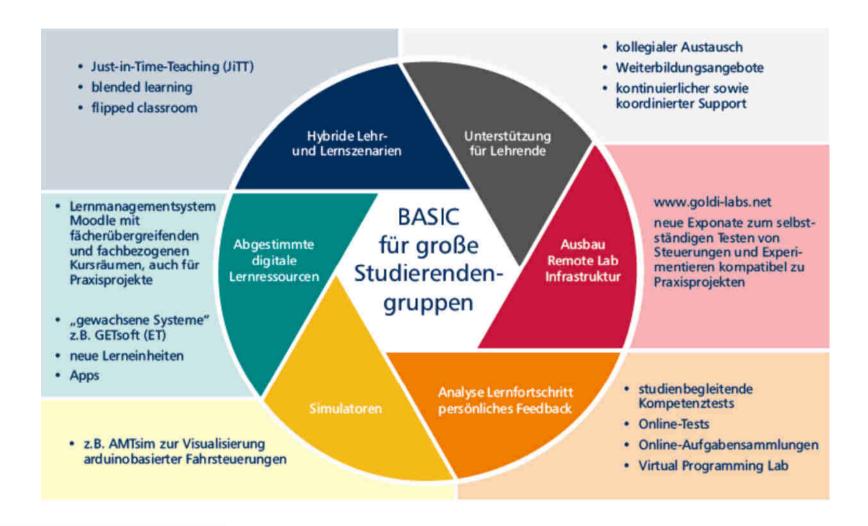
- Neugestaltung des Curriculums
- Unterstützungsbedarf der Studierenden
- Testierung von Zwischenergebnissen
- Integriertes Angebot "Team- und Projektarbeit"

Quelle der Bilder: TU Ilmenau/ BASIC

Lehrkultur und Lehrgestaltung

Unterstützung von...

- Verzahnung der Lehrangebote
- Überarbeitung von Curricula in der Grundlagenausbildung
- Entwicklung und Erprobung neuer Lehrformen, neuer Lehrmaterialien in allen Fächern und Bereichen der Grundlagenausbildung wurden neue Lehrformen entwickelt und erprobt
- Unterstützung hochschuldidaktische Weiterbildung der Lehrenden
- Kultur des kollegialen Austausches der Lehrenden


Was nehmen die Lehrenden mit?

- Entwicklung und Erprobung neuer Lehrangebote und Lehrformate
- Einbeziehung Studierender in Weiterentwicklung der Angebote
- Interdisziplinärer kollegialer Austausch (besonders in Bezug auf Lehre)

Schwerpunkte digitaler Unterstützung

Seite 17

Technische Universität Ilmenau

