Panel 5
Self-Study
A Practical Example and the Results

Prof. Dr.-Ing. Daniel Schilberg
Information Management in Mechanical Engineering,
Interoperability of Simulations,
RWTH Aachen University

19.11.2012
Contents

I. Use Case Scenario
II. Theoretical Background
III. Results
IV. Related Projects
Objective of „Computer Science in Mechanical Engineering“

- Content of the lecture: Introduction to Software Engineering
 - Java
 - Basics of object-oriented programming
 - Project management
 - Software development processes
 - Requirements analysis
 - Software design
 - Testing

- Objective of the affiliated laboratory:
 - Practical introduction to Programming
 - Consolidation of contents of lecture by application
Challenges

- Huge number of attendants
- Limited resources
- Varying previous knowledge
- Prejudices against programming
- Low motivation

“I am studying Mechanical Engineering, not Computer Science”
Top priority: Reduce prejudices, improve motivation

- Avoid unnecessary complexity
- Provide success in early stages
- Self-contained and applicatory tasks
- Establish a connection to topics from Mechanical Engineering

Medium of Choice: Robotics
- Platform: LEGO Mindstorms NXT
- Firmware: LeJOS
- Programming in teams of two
Constraints due to boundary conditions

- Usual Mindstorms courses:
 - Students build robots themselves
 - Each group needs own robot
 - Demand for more storage space
 - Students build individual robots
 - Robots cannot be shared
 - Individual problems
 - Models are often mobile
 - Demand for test areas
 - Debugging via Bluetooth
Use of a preconstructed fixed crane model

+ Close relation to applications within Mechanical Engineering
+ One setup
+ No time spent on construction
+ Model can be used subsequently by several groups
+ No additional testing areas
+ Data transfer via USB

- Students cannot construct their own robot
- Predetermined setup constricts students
The Laboratory - Structure

weeks

01 02 03 04 05 06 07 08 09 10 11 12

Lecture

Java Programming Software Engineering Additional Topics

Laboratory

Intro Java Intro NXT Supp. Gate 0 Supp. Gate 1 Support Final Gate
I. Use Case Scenario

II. Theoretical Background

III. Results

IV. Related Projects
Theory-based recommendations

Learning activities

- **Learning process phase**

- **Key activities**: groups of activities with focus on certain aspects

- **Concrete activities**: can be ordered in sequences

Learning resources

- **Learning tools/services** can be recommended based on the chosen learning activities and on the skills of a learner

- **Artefacts**: any product of individuals or groups or of their behaviour or interactions (e.g. documents)

- **Actors**: human beings and (software-) agents

21 April 2010
Activities

Learning Phases

Learning process phase 1: Learner profile information is defined or revised

Learning process phase 2: Learner finds and selects learning resources

Learning process phase 3: Learner works on selected learning resources

Learning process phase 4: Learner reflects and reacts on strategies, achievements and usefulness

Key-Activities

- Goal setting
- Task strategies
- Time management
- Self-monitoring
- Self-evaluation
- Help-seeking (SRL)
- Self-reflection
- Exercising
- Interacting
- Receiving
- Exploration
- Experimentation
- Creation
- Imitating

Concrete Activities

- To identify strategies how to reach goals
- To set goals specific
- To order goals hierarchically
- To focus on the learning process
- To focus on performance outcome
- To formulate goals specifically and precisely
- To set and revise goals daily (temporal proximity)
- To set goals consciously
- To set goals with lack of conflict among goals
- To define dependencies between and within (sub-)goals
- To describe obstacles, which could hinder (sub-)goal achievement
- To describe cause of obstacles
- To self-control time
- To observe
- To memorize
- To imitate
- To absorb
- To copy
- To reproduce
- To acquire skills and behaviours from other people
- To transform/classify/organize modeling stimuli into easily remembered schemes
- To code symbolic
- To organize cognitive
- To practice/exercised train motorically
- To select relevant events out of total stimulus complex
- To transform conceived actions into real behaviour
- To guide own performance
- To control own performance
- To correct if necessary own performance
- To process external, vicarious and self reinforcement
- To be attentive
- To give oneself feedback regarding accuracy
Dependencies Web Knowledge Map (WKM)

Teacher
- Providing structures and "seed content"
- Motivation and introduction for the students
- Evaluate and steer the process

Industry
- Uses the WKM for professional development
- Provides practical (real world) exercises, examples, contact partner, excursions, practical trainings or master thesis.

Students
- Uses the WKM for self-controlled learning
- Add comments, questions, refinements
- Get industry-contacts

- **Web Knowledge Map (WKM)**
 - Relation Classes
 - Knowledge Classes
 - Knowledge Objects
 - Relation Objects

- **Navigation**
- **Administration**
- **Get student contacts**
- **Get industry contacts**
- **Get feedback**
- **Add new content**
- **Organise and motivate**
- **Content usage**
- **Content refinement, insert questions, add comments**
- **Get feedback**
Knowledge Map

History with CAM-widget

Chat-widget for collaborative learning
I. Use Case Scenario

II. Theoretical Background

III. Results

IV. Related Projects
Benchmark Data

Start Date: 10.08.2012, 15:05 h
End Date: 18.09.2012, 11:27 h
Logins: 5796
Website hits: 240239
Accessed articles: 144295
Hits per login: 41
Accessed articles per login: 25
Knowledgemap - Hits

Logins

19.11.2012
I. Use Case Scenario

II. Theoretical Background

III. Results

IV. Related Projects
ROLE – Responsive Open Learning Environments

- European collaborative 4-year project (16 research groups from 6 EU countries and China, 2009-2013)
- Centred around the concept of self-regulated learning to create responsible and thinking learners
- Tools from ROLE Widget Store helps teachers to create open personal learning environments for their students with support for
 - planning their learning process
 - searching independently for resources
 - learn and reflect on their learning process and progress
- IMA/ZLW&IfU: Knowledge Map testbed including the Web 2.0 Knowledge Map (Wiki with additional visualization capabilities, WKM), chat & history widget
 - Used in course for information science in mechanical engineering with +1500 students incl. tool evaluation

To read more:
- ROLE’n Web: http://www.role-project.eu/
ExAcT – Center of Excellence in Academic Teaching

ExAcT is part of state-countries program “RWTH 2020 Excellence in Teaching and Learning” and part of the project “RWTH 2020 – Improving teaching quality together“ of the Institute Cluster IMA/ZLW & IfU at the RWTH Aachen university.

- **ExAcT Qualification**
 - Advanced training and competence impartation for academics at all levels of a university career

- **ExAcT Research**
 - practice-orientated and student-centered teaching research on media- and subject-didactic issues in the context of different disciplines
 - Networking of all actors involved in teaching at the RWTH University
Project ELLI Research Fields

<table>
<thead>
<tr>
<th>Empiricism & surrounding parameters</th>
<th>Curricular development</th>
<th>Concepts for Teaching and Learning</th>
<th>Testing based on skills</th>
<th>Teaching experiments</th>
<th>Large classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Practice Monitoring</td>
<td>Assessment</td>
<td>Shift from Teaching to Learning:</td>
<td>Skill oriented</td>
<td>Didactic skill</td>
<td>Appropriate</td>
</tr>
<tr>
<td>Collaboration of the CoP and the Advisory Board</td>
<td>Orientation Phase</td>
<td>Problem-based Learning</td>
<td>Integrated in the learning-process</td>
<td>enhancement of secondary- and impact-research</td>
<td>teaching and learning concepts</td>
</tr>
</tbody>
</table>
Questions?

Prof. Dr.-Ing. Daniel Schilberg
Tel.: +49 241-80-91130
daniel.schilberg@ima-zlw-ifu.rwth-aachen.de